Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass

Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass

  一种基于水凝胶的三维微流控芯片,用于肿瘤-血管微环境仿生。

Introduction

  直到今天,我们对细胞过程的大部分知识都来自于由扁平、坚硬的材料制成的培养皿中进行的实验。尽管操作过程可能很简单,但在二维培养系统中,细胞可能表现出与在体内不同的行为,如扁平的形状、异常的极化和对药物试剂的改变的反应。更重要的是,在这些环境中,细胞只从一个腹侧接收营养和信号并作出反应,而不是像在身体中那样在所有的三个维度中进行反应。因此开发体三维仿生培养系统以理解体内复杂和动态的环境是十分必要的。

  水凝胶作为一种水膨胀的聚合物网络,正成为最有希望的选择,因为它们不仅模拟天然的细胞外基质(ECM),而且以类似于软组织的力学性质支持细胞粘附。当谈到细胞如何对外界刺激作出反应时,生长在坚硬、富含胶原蛋白的基质上的细胞往往比生长在较软的胶原蛋白基质上的细胞更耐药。由此我们可以看出,使用水凝胶培养平台时,细胞结果可能存在巨大差异。现在有很多水凝胶可供选择,包括:

  • 天然材料,如胶原(collagen)和纤维蛋白(fibrin);
  • 合成材料,如聚丙烯酰胺(polyacrylamide, PAM)和聚乙二醇(polyethylene glycol, PEG);
  • 杂交材料,如透明质酸(hyaluronic acid, HA)。

  体内细胞不仅与ECM相互作用,而且还与周围细胞分泌的分子相互作用,如肿瘤巢以及其他器官如内分泌系统中的情况。微流控系统,通过连接众多微通道网络来精确操纵微/纳升流体,整合了多种化学和生物分析方法于单个芯片,具有微尺度、多功能整合和高效率的优点,对于体外微环境仿生很有益处。

  然而,在设计用于细胞研究的水凝胶微流控装置时,需要考虑多个因素。一些常用的生物相容性水凝胶仍然会对细胞造成损害,因为它们的凝胶过程包括温度变化(如琼脂糖)、酸性pH值(如胶原蛋白)或紫外线照射(如PEG-DA)。此外一些水凝胶需要特定的操作条件,使其难以引入微流控通道。例如,基质胶需要 在低温下保存和加工,在24-37℃下成胶。因此,有必要引入具有更高生物相容性和更简便操作步骤的水凝胶。目前,水凝胶微流控器件大多用于特殊功能,限制了其可行性。然而集成多个功能单元的设备通常需要复杂的结构和多步骤的制造过程。

Fig. 1. Microfluidic chip design, fabrication and modelling

  • (A)微流控芯片设计为上下两层,中间由聚碳酸酯(PC)膜分隔。上层由2个小室组成,由厚度为100 μm的PDMS墙分开。高为270 μm,宽为800 μm,长为1.5 mm。下层为一个宽通道。PC膜孔径为5 μm。
  • (B)膜上直径为5 μm的孔隙处的表面张力保证了当下道为空时,溶液仍在上腔,而当下道充满溶液时,扩散迅速进行。
  • (C)靠近芯片入口区域的显微图片。
  • (D)肿瘤-血管仿生模型设计。

Fig. 2. Synthesis of DF-PEG-GCS dynamic hydrogel and permeability evaluation

  • (A)DF-PEG合成和DF-PEG-GCS动态水凝胶形成的示意图。
  • (B)荧光素钠在DF-PEG-GCS动态水凝胶中扩散的荧光图像。
  • (C)不同时间点,图(B)中心虚线正则化的荧光强度。从右边缘的点300 μm从扩散开始线约50 μm,在30分钟内达到超过80%的强度,60分钟以上超过90%强度。该实验验证动态水凝胶适用于下面的药物刺激实验,因为微流体芯片的通道高度不超过300 μm。

Fig. 3. 3D and z-axis maximum projection views of confocal microscopy images

  • (A-F)共聚焦显微镜图像的3D(A,B,D和E)和z轴最大投影(C,F)视图。反映了封装在DF-PEG-GCS动态水凝胶中的HepG2和MCF-7细胞的活性(活细胞:绿色,死细胞:红色)和空间分布。 (A,D)凝胶化后的第1天培养。 (B,C,E,F)胶凝后第5天培养。
  • (G-H)HepG2和MCF-7细胞的细胞活性。

Fig. 4. Tumour-vascular microenvironment simulation on the microfluidic device

  • (A)肿瘤血管微环境的3D共聚焦荧光图像的侧视图。
  • (B)肿瘤血管微环境的3D共聚焦荧光图像的正视图。
  • (C-F)蓝色(C),红色(D),绿色(E)激光通道及其合并图像(F)的共聚焦显微镜图像的Z轴最大投影视图。

Fig. 5. Drug stimulation in the tumour-vascular microenvironment

  • (A)微环境仿生系统(i)和对照组(ii)在20 μg/mL DOX浓度下的MCF-7细胞的共聚焦显微镜图像的Z轴最大投影图。
  • (B)从微环境仿生系统和对照组中细胞的共聚焦图像计算出的MCF-7细胞的细胞活性。
  • (C)从微环境仿生系统中的细胞的共聚焦图像计算出的MCF-7细胞和MCF-7 / ADR细胞的细胞活力。

Conclusion

  通过开发一种包含三个功能单元的水凝胶微流控装置,第一次成功地构建了肿瘤-血管微环境,包括完整的内皮细胞层、成纤维细胞、乳腺癌细胞及抗药分支。

  • 动态共价的席夫碱键合形成的GCS-DF-PEG水凝胶具有高渗透性和生物相容性,支持细胞长期培养和细胞-细胞、细胞-ECM的物质交换。
  • 培养在微环境中的乳腺癌细胞的药物响应,显示了明显的活性增加,这种增强的化疗抗性也与体内研究一致。
  • 平台可以在相同的化学环境下同时观察敏感和抗性肿瘤细胞。
  • 微流控细胞研究中动态水凝胶的应用减少了操作的复杂性,扩展了研究边界。
  • 所使用的细胞类型可以很容易地被替换来构建其他组织模型和研究一般的细胞相互作用。

Reference

Wang S, Mao S, Li M, et al. Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass[J]. Talanta, 2019, 191: 67–73.

评论

3D cell culture 3D cell culturing 3D cell microarrays 3D culture 3D culture model 3D printing 3D spheroid 3D tumor culture 3D tumors 3D vascular mapping ACT ADV AUTODESK Abdominal wall defects Acoustofluidics Adipocyte Adipogenesis Adoptive cell therapy AirPods Alginate Anticancer Anticancer agents Anticancer drugs Apple Apriori Association Analysis August AutoCAD Autodock Vina Bio-inspired systems Biochannels Bioengineering Bioinspired Biological physics Biomarkers Biomaterial Biomaterials Biomimetic materials Biomimetics Bioprinting Blood purification Blood-brain barrier Bone regeneration Breast cancer Breast cancer cells Breast neoplasms CM1860 CRISPR/Cas9 system CSS CTC isolation CTCs Cancer Cancer angiogenesis Cancer cell invasion Cancer immunity Cancer immunotherapy Cancer metabolism Cancer metastasis Cancer models Cancer screening Cancer stem cells Cell adhesion Cell arrays Cell assembly Cell clusters Cell culture Cell culture techniques Cell mechanical stimulation Cell morphology Cell trapping Cell-bead pairing Cell-cell interaction Cell-laden gelatin methacrylate Cellular uptake Cell−cell interaction Cervical cancer Cheminformatics Chemotherapy Chimeric antigen receptor-T cells Chip interface Circulating tumor cells Clinical diagnostics Cmder Co-culture Coculture Colon Colorectal cancer Combinatorial drug screening Combinatorial drug testing Compartmentalized devices Confined migration Continuous flow Convolutional neural network Cooking Crawler Cryostat Curved geometry Cytokine detection Cytometry Cytotoxicity Cytotoxicity assay DESeq DNA tensioners Data Mining Deep learning Deformability Delaunay triangulation Detective story Diabetic wound healing Diagnostics Dielectrophoresis Differentiation Digital microfluidics Direct reprogramming Discrimination of heterogenic CTCs Django Double emulsion microfluidics Droplet Droplet microfluidics Droplets generation Droplet‐based microfluidics Drug combination Drug efficacy evaluation Drug evaluation Drug metabolism Drug resistance Drug resistance screening Drug screening Drug testing Dual isolation and profiling Dynamic culture Earphone Efficiency Efficiency of encapsulation Elastomers Embedded 3D bioprinting Encapsulation Endothelial cell Endothelial cells English Environmental hazard assessment Epithelial–mesenchymal transition Euclidean distance Exosome biogenesis Exosomes Experiment Extracellular vesicles FC40 FP-growth Fabrication Fast prototyping Fibroblasts Fibrous strands Fiddler Flask Flow rates Fluorescence‐activated cell sorting Functional drug testing GEO Galgame Game Gene Expression Profiling Gene delivery Gene expression profiling Gene targetic Genetic association Gene‐editing Gigabyte Glypican-1 GoldenDict Google Translate Gradient generator Gromacs Growth factor G‐CSF HBEXO-Chip HTML Hanging drop Head and neck cancer Hectorite nanoclay Hepatic models Hepatocytes Heterotypic tumor HiPSCs High throughput analyses High-throughput High-throughput drug screening High-throughput screening assays High‐throughput methods Histopathology Human neural stem cells Human skin equivalent Hydrogel Hydrogel hypoxia Hydrogels ImageJ Immune checkpoint blockade Immune-cell infiltration Immunoassay Immunological surveillance Immunotherapy In vitro tests In vivo mimicking Induced hepatocytes Innervation Insulin resistance Insulin signaling Interferon‐gamma Intestinal stem cells Intracellular delivery Intratumoral heterogeneity JRPG Jaccard coefficient JavaScript July June KNN Kidney-on-a-chip Lab-on-a-chip Laptop Large scale Lattice resoning Leica Leukapheresis Link Lipid metabolism Liquid biopsy Literature Liver Liver microenvironment Liver spheroid Luminal mechanics Lung cells MOE Machine Learning Machine learning Macro Macromolecule delivery Macroporous microgel scaffolds Magnetic field Magnetic sorting Malignant potential Mammary tumor organoids Manhattan distance Manual Materials science May Mechanical forces Melanoma Mesenchymal stem cells Mesoporous silica particles (MSNs) Metastasis Microassembly Microcapsule Microcontact printing Microdroplets Microenvironment Microfluidic array Microfluidic chips Microfluidic device Microfluidic droplet Microfluidic organ-on-a chip Microfluidic organ-on-a-chip Microfluidic patterning Microfluidic screening Microfluidic tumor models Microfluidic-blow-spinning Microfluidics Microneedles Micropatterning Microtexture Microvascular Microvascular networks Microvasculatures Microwells Mini-guts Mirco-droplets Molecular docking Molecular dynamics Molecular imprinting Monolith Monthly Multi-Size 3D tumors Multi-organoid-on-chip Multicellular spheroids Multicellular systems Multicellular tumor aggregates Multi‐step cascade reactions Myeloid-derived suppressor cells NK cell NanoZoomer Nanomaterials Nanoparticle delivery Nanoparticle drug delivery Nanoparticles Nanowell Natural killer cells Neural progenitor cell Neuroblastoma Neuronal cell Neurons Nintendo Nissl body Node.js On-Chip orthogonal Analysis OpenBabel Organ-on-a-chip Organ-on-a-chip devices Organically modified ceramics Organoids Organ‐on‐a‐chip Osteochondral interface Oxygen control Oxygen gradients Oxygen microenvironments PDA-modified lung scaffolds PDMS PTX‐loaded liposomes Pain relief Pancreatic cancer Pancreatic ductal adenocarcinoma Pancreatic islet Pathology Patient-derived organoid Patient-derived tumor model Patterning Pearl powder Pearson coefficient Penetralium Perfusable Personalized medicine Photocytotoxicity Photodynamic therapy (PDT) Physiological geometry Pluronic F127 Pneumatic valve Poetry Polymer giant unilamellar vesicles Polystyrene PowerShell Precision medicine Preclinical models Premetastatic niche Primary cell transfection Printing Protein patterning Protein secretion Pubmed PyMOL Pybel Pytesseract Python Quasi-static hydrodynamic capture R RDKit RNAi nanomedicine RPG Reactive oxygen species Reagents preparation Resistance Review Rod-shaped microgels STRING Selective isolation Self-assembly Self-healing hydrogel September Signal transduction Silk-collagen biomaterial composite Similarity Single cell Single cells Single molecule Single-cell Single-cell RNA sequencing Single‐cell analysis Single‐cell printing Size exclusion Skin regeneration Soft lithography Softstar Spheroids Spheroids-on-chips Staining StarBase Stem cells Sub-Poisson distribution Supramolecular chemistry Surface chemistry Surface modification Switch T cell function TCGA Tanimoto coefficient The Millennium Destiny The Wind Road Thin gel Tissue engineering Transcriptome Transfection Transient receptor potential channel modulators Tropism Tubulogenesis Tumor environmental Tumor exosomes Tumor growth and invasion Tumor immunotherapy Tumor metastasis Tumor microenvironment Tumor response Tumor sizes Tumor spheroid Tumor-on-a-chip Tumorsphere Tumors‐on‐a‐chip Type 2 diabetes mellitus Ultrasensitive detection Unboxing Underlying mechanism Vascularization Vascularized model Vasculature Visual novel Wettability Windows Terminal Word Writing Wuxia Xenoblade Chronicles Xin dynasty XuanYuan Sword Youdao cnpm fsevents miR-125b-5p miR-214-3p miRNA signature miRanda npm
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×